Books of Origami

Robert J. Lang. The Complete Book of Origami: Step-by-Step Instructions in Over 1000 Diagrams. Dover Publications, Mineola, NY. Copyright 1988 by Robert J. Lang. ISBN 0-486-25837-8
  • (pbk.)
Pages 1-30 are an excellent introduction to most of these skills. Each of these 13 models is designed to let you practice one skill several times. Unfortunately, the remaining 24 models leave out lots of pre-creases. Many models are folded from non-square paper.
  • Robert J. Lang. Origami Design Secrets: Mathematical Methods for an Ancient Art. A K Peters, Natick, MA. Copyright 2003 by A K Peters. ISBN 1-56881-194-2 (pbk)
This book shows how crease patterns and folding techniques are related to the large-scale structure of a model. It also shows how closed-unsinking was derived, using Lang's TreeMaker software for prototyping arbitrarily complex origami designs. Includes his famous super-complex "Black Forest Cuckoo Clock."
  • Robert J. Lang. Origami in Action: Paper Toys that Fly, Flap, Gobble and Inflate. St. Martin's Griifin, 1997. ISBN 0312156189
  • Tomoko Fuse. Unit Origami: Multidimensional Transformations. Japan Publications, inc. Tokyo. Copyright 1990 by Tomoko Fuse. ISBN 0-87040-852-6
This is an excellent book about modular origami, and serves as a great introduction to geometric models and designs.


Your Ad Here
  • Kunihiko Kasahara. Origami Omnibus: Paper Folding for Everybody. Japan Publications, inc. Tokyo. Copyright 1988 by Kunihiko Kasahara. ISBN 4-8170-9001-4
A good book for a more advanced origamian, this book presents many more complicated ideas and theories, although the author tends to go off on long tangents about random topics. Still lots of good models though...
  • Kunihiko Kasahara and Toshie Takahama. Origami for the Connoisseur. Japan Publications, inc. Tokyo. Copyright 1987 by Kunihiko Kasahara and Toshie Takahama. ISBN 0-87040-670-1
Another good book; same comments as the previous author.
  • Satoshi Kamiya. Works by Satoshi Kamiya, 1995-2003. Origami House, Tokyo. Copyright 2005 by Satoshi Kamiya. ISBN 0000041944
An extremely complex book for the elite origamian, most models take 100+ steps to complete. Includes his famous Divine Dragon Bahamut and Ancient Dragons. Instructions are in Japanese and English.
  • Issei Yoshino. Issei Super Complex Origami. Origami House, Tokyo.
Contains many complex models, notably his Samurai Helmet, Horse, and multimodular Triceratops skeleton. Instructions are in Japanese.
  • Jeremy Shafer. Origami to Astonish and Amuse. St. Martin's Press, New York, NY. Copyright 2001 by Jeremy Shafer. ISBN 0-312-25404-0
A clever cornucopia of whimsical models, such as his Nail Clippers, Surfer on a Wave, Invisible Duck, Running Car, Monolithic Rubblestone boulder plus 84 others.
  • One Thousand Paper Cranes: The Story of Sadako and the Children's Peace Statue by Takayuki Ishii, ISBN 0-440-22843-3
  • Sadako and the Thousand Paper Cranes by Eleanor Coerr, ISBN 0-698-11802-2
  • Origami 1, Robert Harbin, 1969, ISBN 0-340-10902-5
  • Origami 2, Robert Harbin, ISBN 0-340-15384-9
  • Origami 3, Robert Harbin, 1972, ISBN 0-340-16655-X
  • Origami 4, Robert Harbin, 1977, ISBN 0-340-21822-3 (rare)
  • Extreme Origami, Kunihiko Kasahara, 2001, ISBN 0-8069-8853-3
  • Ariomar Ferreira da Silva. Brincando com Origami Arquitetônico: 16 diagrams. Global Editora, São Paulo, Brazil. Copyright 1991 by Ariomar Ferreira da Silva and Leôncio de O. Carvalho. ISBN 85-260-0273-2
  • Masterworks of Paper Folding by Michael LaFosse

Origami information

Paper and other materials

Although almost any laminarmaterial can be used for folding, the choice of material used greatly affects the folding and final look of the model.

Normal copy paper with weights of 70–90 g/m² (19-24lb) can be used for simple folds, such as the crane and waterbomb. Heavier weight papers of 100 g/m² (approx. 25lb) or more can be wet-folded. This technique allows for a more rounded sculpting of the model, which becomes rigid and sturdy when it is dry.

Special origami paper, often also referred to as "kami" (Japanese for paper), is sold in prepackaged squares of various sizes ranging from 2.5 cm to 25 cm or more. It is commonly colored on one side and white on the other; however, dual coloured and patterned versions exist and can be used effectively for color-changed models. Origami paper weighs slightly less than copy paper, making it suitable for a wider range of models.

Foil-backed paper, just as its name implies, is a sheet of thin foil glued to a sheet of thin paper. Related to this is tissue foil, which is made by gluing a thin piece of tissue paper to kitchen aluminium foil. A second piece of tissue can be glued onto the reverse side to produce a tissue/foil/tissue sandwich. Foil-backed paper is available commercially, but not tissue foil; it must be handmade. Both types of foil materials are suitable for complex models.

Washi is the predominant origami paper used in Japan. Washi is generally tougher than ordinary paper made from wood pulp, and is used in many traditional arts. Washi is commonly made using fibers from the bark of the gampi tree, the mitsumata shrub (Edgeworthia papyrifera), or the paper mulberry but also can be made using bamboo, hemp, rice, and wheat.

Artisan papers such as unryu, lokta, hanji, gampi, kozo, saa, and abaca have long fibres and are often extremely strong. As these papers are floppy to start with, they are often backcoated or resized with methylcellulose or wheat paste before folding. Also, these papers are extremely thin and compressible, allowing for thin, narrowed limbs as in the case of insect models.

Paper money from various countries are also popular to create origami with, called "Moneygami". It is common to create the figure depicted on the note itself.

Few other items other than paper and fingers are necessary to fold origami; however, some enthusiasts prefer to use a folding bone to sharpen creases while folding। Other folders grow certain nails long to aid with creasing instead of a folding bone.


Mathematics of origami

The practice and study of origami encapsulates several subjects of mathematical interest. For instance, the problem of flat-foldability (whether a crease pattern can be folded into a 2-dimensional model) has been a topic of considerable mathematical study.

Significantly, paper exhibits zero Gaussian curvature at all points on its surface, and only folds naturally along lines of zero curvature. But the curvature along the surface of a non-folded crease in the paper, as is easily done with wet paper or a fingernail, is no longer subject to this constraint.

The problem of rigid origami ("if we replaced the paper with sheet metal and had hinges in place of the crease lines, could we still fold the model?") has great practical importance. For example, the Miura map fold is a rigid fold that has been used to deploy large solar panel arrays for space satellites.


Technical origami



Technical origami, also known as origami sekkei , is a field of origami that has developed almost hand-in-hand with the field of mathematical origami. In the early days of origami, development of new designs was largely a mix of trial-and-error, luck and serendipity. With advances in origami mathematics however, the basic structure of a new origami model can be theoretically plotted out on paper before any actual folding even occurs. This method of origami design was pioneered by Robert Lang, Meguro Toshiyuki and others, and allows for the creation of extremely complex multi-limbed models such as many-legged centipedes, human figures with a full complement of fingers and toes, and the like.

The main starting point for such technical designs is the crease pattern (often abbreviated as 'CP'), which is essentially the layout of the creases required to form the final model. Although not intended as a substitute for diagrams, folding from crease patterns is starting to gain in popularity, partly because of the challenge of being able to 'crack' the pattern, and also partly because the crease pattern is often the only resource available to fold a given model, should the designer choose not to produce diagrams. Still, there are many cases in which designers wish to sequence the steps of their models but lack the means to design clear diagrams. Such origamists occasionally resort to the Sequenced Crease Pattern (abbreviated as SCP) which is a set of crease patterns showing the creases up to each respective fold. The SCP eliminates the need for diagramming programs or artistic ability while maintaining the step-by-step process for other folders to see. Another name for the Sequenced Crease Pattern is the Progressive Crease Pattern (PCP).

Paradoxically enough, when origami designers come up with a crease pattern for a new design, the majority of the smaller creases are relatively unimportant and added only towards the completion of the crease pattern. What is more important is the allocation of regions of the paper and how these are mapped to the structure of the object being designed. For a specific class of origami bases known as 'uniaxial bases', the pattern of allocations is referred to as the 'circle-packing'. Using optimization algorithms, a circle-packing figure can be computed for any uniaxial base of arbitrary complexity. Once this figure is computed, the creases which are then used to obtain the base structure can be added. This is not a unique mathematical process, hence it is possible for two designs to have the same circle-packing, and yet different crease pattern structures.

(courtesy : Wikipedia)

Origami societies

If you would like to know more about origami, here are the addresses for well organised societies. They accept overseas members and welcome beginners. Also both publish regular magazines, hold conventions and regional meetings, sell a wide variety of books and paper, and publish booklets on specialist origami topics.

1. British Origami Society
2. Australian Origami Society
3. Oxford Origami Society

You can find lots more addresses here
second link here

Origami Paper



Origami is defined as 'art of paper folding' most paper folders spend time thinking about paper, preferring to get straight down to business folding, frequently with whatever paper happens to be to hand, however inappropriate it may be. A line consideration of paper, though, can significantly improve the look of what you make and increase your pleasure in folding it.
The easiest and cheapest source of good quality paper is photocopy (Xerox) paper.

History of Origami

The history of origami is rather obscure, but clearly cannot pre-date the invention of paper in china about two thousand years ago. The word origami is not Chinese but Japanese and is used worldwide out of respect for ancestral home of the art. When China invaded Japan in AD 610 the secret of paper making travelled with them and immediately assimilated into Japanese culture.

The growth of creative origami in the west began in 1950s, though it was minor Spanish tradition and practised by the occasional creative individual before that time. Curiously, since that same decade, the art has also undergone a major creative revival in Japan, so much so that there are now several hundred Japanese language books currently in print, most contain new creative work. A great amount of new work is also coming from west, in all manners of style ranging from charmingly simple to the astonishingly complex and from the expensive to geometric.

Ref.(Papercraft and Origami)

Introduction

Origami is most popular of all papercrafts because this art is inexpensive, can be done anywhere at anytime as per your convenience, it requires no equipments or facilities other that a sheet os paper and a firm surface to work on. Moreover the transormation of ordinary piece of paper into pleasing origami design is kind of alchemy, perhaps even more so in today's computer controlled,battery operated culture,then ever before.

The word Origami is formed from 'ori'(to fold) and 'kami' meaning paper and also God ('kami' becomes 'gami' when combined with 'ori)'